Nom et prénom :		(Classe :		Répondre directemer	it sur le sujet
DEVOIR DE VACA	NCES	pour	les élè	èves a	ayant choisi	Note
la spécialité PHY	SIQUE	en c	lasse	de 1 ^{èr}	^{re} Générale	/ 50
e devoir de vacances sera ramas	sé, évalué e	 et intégré	à la moyer	nne du pre	emier trimestre. Chaque	
UTOMATISMES INDISF	PENSAB	LES (2	1,5 poir	nts)		
EXERCICE N°1 : Détermine	e le nomb	re de chi	ffres signi	ficatifs de	e chacune de ces mes	ures :
28,0 mL →	0,006	67 g	→		2,690 g →	
2500 mL →	0,023	30 cm	→		43,07 cm →	
	l					
EXERCICE N°2: Fais les calcu				1		
	0,0853 + 0,0547 + 0,0370 + 0,00387 =			-	- 14,369 =	
25,37 + 6,850 + 15,07 + 8,056	o =			0,093 -	- 0,05 =	·
XERCICE N°3 : Fais les calcu	ls suivants,	, puis écri	s le résulta	t avec le k	oon nombre de chiffres s	ignificatifs :
3,08 x 5,2 =			0,0	075 / 0,0	30 =	
0,0036 x 0,02 =	0036 x 0,02 =			39 / 24,2 =		
EXERCICE N°4: Donne la sig	nification d	es lettres	grecques	suivantes,	la grandeur associée et	l'unité SI
Θ se lit	Grand	Grandeur :			Unité :	
λ se lit	Grand	Grandeur :			Unité :	
ρ se lit	Gran	Grandeur :			Unité :	
EXERCICE N°5 : Fais les calc	uls, écris le	résultat	en notation	scientifiq	ue avec les bons chiffres	s significatifs:
(0,0006 x 8000) / 120 =		(380.10	06 / 3 00 1	0 ⁸) + 7 4	=	
0,51.10 ⁻³ / 6.10 ⁻⁷ =		2,4.10°	° x 5,2.10 ⁻⁰	x 9,8.10	T ⁻² =	
EXERCICE N°6: Convertis. E	cris ton ré	sultat er	n décimale	s.		
70,0 mL = L				540 µs =s		
2 L = mL			12 000	12 000 g =kg		
23,75 tonnes = kg			6 MV =	6 MV = V		
	re de gran	deur des	s calculs s	uivants :		
EXERCICE N°7: Donne l'ordi				$3,56.10^2 \times 8,2 \rightarrow \dots$		
8,03.10 ⁵ x 3,79.10 ⁻⁴	→		3,56.10) ² x 8,2	→	

Dans les formules ci-dessous, exprime la variable qui est donnée entre parenthèses sur fond gris, en fonction des autres variables. En cas d'écriture fractionnaire, celle-ci devra être la plus simple possible.

1 U = R . I (R) **2** P = R . I² (I) **3**
$$\frac{1}{R} = \frac{1}{R1} + \frac{1}{R2}$$
 (R) **4** I = I₀ (1 + Θ . α) (Θ) **5** $\lambda = \frac{c}{f}$ (1) **6** $\frac{1}{c} = \frac{1}{C1} + \frac{1}{C2}$ (C2) **7** V = $\frac{1}{3}$ a² h (h) **8** V = $\frac{(B+b)}{2}$ (b) **9** R = ρ . $\frac{l}{S}$ (S)

6
$$\frac{1}{C} = \frac{1}{C1} + \frac{1}{C2}$$
 (C2) **7** $V = \frac{1}{3} a^2 h$ (h) **8** $V = \frac{(B+D)}{2}$ (b) **9** $R = \rho \cdot \frac{t}{S}$ (S)

THEME 1 : CHIMIE (9 points)

Détartrer une bouilloire	Détartre	er une	boui	illoire
--------------------------	----------	--------	------	---------

Le tartre (ou calcaire) est un dépôt solide de carbonate de calcium de formule chimique CaCO₃ qui se forme dans les appareils utilisant de l'eau. Lorsqu'une bouilloire est « entartrée », ses performances sont réduites. Le vinaigre blanc qui contient de l'acide éthanoïque de formule CH₃CO₂H permet de détartrer un appareil entartré.

- **Q1** Equilibrer l'équation suivant traduisant la dissolution du tartre par le vinaigre $CaCO_3 +CH_3CO_2H \rightarrow ...Ca^{2+} +CO_2 +CH_3CO_2^- +H_2O$
- Q2 Calculer la masse d'un atome d'oxygène
- Q3 Calculer la masse de la molécule de calcaire

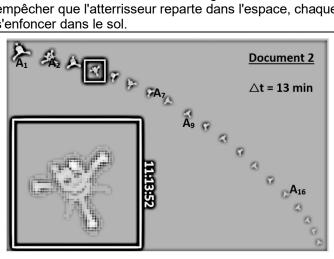
Q4 – En utilisant le document ci-contre, montrer que la quantité de matière de calcaire dans la bouilloire vaut n = 0,6 mol

La bouilloire neuve pèse : 550 g La bouilloire entartrée pèse : 610 g

Q5 – Pour éliminer une molécule de calcaire, il faut utiliser 2 molécules d'acide éthanoïque. Combien faut-il de molécules de vinaigre pour dissoudre tout le calcaire de la bouilloire ?

VINAIGRE BLANG 8

Q6 –On dispose d'un bidon de vinaigre (voir document ci-contre). En détaillant votre raisonnement, expliquer s'il y a assez de vinaigre pour enlever la totalité du tartre de la bouilloire.


Un vinaigre à 18 ° signifie que 100 mL de vinaigre contiennent 18 g d'acide éthanoïque. Il reste environ 1 L de vinaigre dans le bidon.

Q7 – On désire diluer 10 fois la solution de vinaigre précédente pour préparer 50,0 mL de solution diluée.							
Parmi la liste suivante, cocher le matériel nécessaire à la préparation de cette solution.							
☐ Fiole jaugée de 100,0 mL ☐ Balance ☐ Entonnoir ☐ pipette jaugée de 10,0 mL							
Pipette jaugée de 5,0 mL éprouvette graduée de 50mL Fiole jaugée de 50,0 mL							
oupelle de pesée eau distillée bécher de 100 mL Poire à pipeter							
Sur une copie, écrire le protocole de préparation de cette solution. Faire un schéma de chaque élément							
de verrerie nécessaire.							
Q8 – Si la solution mère a une concentration en masse de 18 g.L ⁻¹ , calculer la concentration de la solution							
diluée. Vous écrirez les formules et calculs nécessaires.							

THEME 2: PHYSIQUE (19,5 points)

Dans le cadre d'une mission de l'Agence spatiale européenne (ASE/ESA), <u>la sonde Rosetta transportant le robot Philaé</u> <u>a</u> été envoyée le 2 mars 2004 par la fusée Ariane 5 vers la comète surnommée *Tchouri*. La mission a été officiellement clôturée à l'automne 2016.

Une des difficultés dans l'atterrissage sur cette comète est la faible intensité de la pesanteur à sa surface. Pour empêcher que l'atterrisseur reparte dans l'espace, chaque pied de *Philaé* a été muni de vis ainsi que d'harpons devant s'enfoncer dans le sol.

PARTIE 1 : Atterrir sur la comète Tchouri

Q1 – Philae est largué par la sonde Rosetta à 9h35min (heure de France métropolitaine) depuis un point A_1 situé à 20 km de Tchouri et atteint la surface de Tchouri ce 12 novembre 2014 à 16h34 Calculer la vitesse moyenne de Philae lors de la totalité de ce largage. Vous donnerez cette vitesse en m.s⁻¹ et en km.h⁻¹.

Q2 – Quel est le nom de la technique utilisée pour obtenir le document 2 ?

Q3 – Donner deux adjectifs permettant de décrire le mouvement de Philae : et et

Q4 – Quel graphique décrit le mieux l'évolution de la vitesse au cours du temps de Philae (entourer votre choix) Justifier.

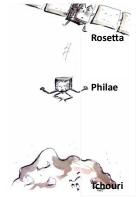
Distance parcourue

Distance parcourue

Distance parcourue

Distance parcourue

0 10 20 30 40 temps

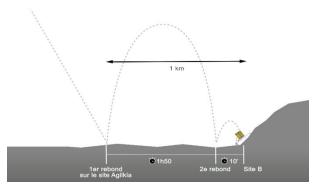

0 10 20 30 40 temps

Q5 – <u>Le document 2</u> présente une partie du relevé des positions de Philae lors de sa descente vers Tchouri. Sur ce document 1 cm représente 4 km.

En utilisant ce document, calculer la vitesse de Philae aux points A₉ et A₁₆ Vous donnerez ces vitesses en m.s⁻¹

Q6 – Représenter les vecteurs vitesses $\overrightarrow{v_9}$ et $\overrightarrow{v_{16}}$ sur le document 2 avec l'échelle suivante : 1 cm<-> 1 m.s⁻¹

Q7 – Sur le schéma ci-contre, représenter la ou les forces subies par Philae au cours de sa descente vers Tchouri. Vous donnerez les caractéristiques de votre (vos) force(s) et ferez un diagramme objet-interactions.

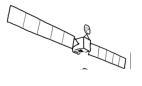

**

**

**

Q8 – Philae est-il soumis à des forces qui se compensent ? Justifier votre réponse en citant le théorème utilisé.

PARTIE 2 : A LA SURFACE DE TCHOURI


Si <u>Philae</u> s'est bien posé à la surface de la <u>comète</u> 67P/Churyumov-Gerasimenko, ce n'est pas à l'endroit attendu. Même la façon dont il s'y est pris a été très surprenante! Il a effectué deux rebonds, un grand puis un petit, la parabole du premier ayant duré 1 h 50 avec une distance parcourue d'environ un kilomètre en longueur et en hauteur.

Q9 - L'intensité de la pesanteur g_A à la surface d'une

planète A, de rayon R_A (en m) et de masse M_A (en kg) s'exprime par : $g_A = \frac{G \times M_A}{(R_A)^2}$. Après avoir exprimé cette formule sous forme littérale avec les notations de l'énoncé, calculer l'intensité de la pesanteur sur Tchouri.

Q10 – Calculer la valeur de la force d'interaction gravitationnelle $F_{Tch/ros}$ exercée par Tchouri sur la sonde Rosetta lorsque celle-ci se trouve à d = 1500 km de la comète Tchouri.

Q11 – Sur le schéma représenter cette force $\overrightarrow{F_{Tch/ros}}$ avec une échelle de 1cm<-> 2 x 10⁻⁷ N

Q12 – Calculer le poids de Philae à la surface de la comète Tchouri.

Q13 – Quelle serait la masse d'un objet à la surface de la Terre ayant le poids de Philaé sur Tchouri ? Vous exprimerez cette masse en g.

Données : Constante de la gravitation universelle $G = 6,67 \times 10^{-11}$ S.I.

Rayon de Tchouri : $R_{Tch} = 2,0 \text{ km}$

Intensité de la pesanteur sur la Terre : $g=10 \text{ m.s}^{-2}$ Masse de la sonde Rosetta : $m_{ros} = 1500 \text{ kg}$

Masse de la comète : m_{Tch} = 1,00× 10^{13} kg. Masse de Philae : m_{Ph} = 100 kg